
Int. J. Multiphase Flow Vo|. I I, No. 2. pp. 213-239. 1985 0301-9322/85 $3.00 + .00 
Printed in the U.S.A. © 1985 Pergamon/Elsevier 

TRANSPORT PROCESSES IN FRACTALS 

II. STOKES FLOW IN FRACTAL CAPILLARY NETWORKS 

P. M. ADLER 
Laboratoire d'A(~rothermique, 4 ter, Route des Oardes, 92190-Meudon, France 

(Received 20 December 1983; in revised form 23 July 1984) 

Abstract--General fractal capillary networks are constructed and described via a systematic use of 
algebraic graph theory. The Stokes flow problem is then addressed in this contribution; the matrix 
relating the flow rates to the pressures is obtained through a general iteration formula, which is 
deduced from the algebraic description of the geometrical structure. This formula is generally 
nonlinear; it is only in the limit of a large number of iterations that it can be iincarized and that a 
fractal exponent can be obtained. Two examples are provided to illustrate the formal developments. 
Various aspects of the results are then discussed and the permeability of a spatially periodic network 
whose unit cell is a fractal calculated. 

1. I N T R O D U C T I O N  

In the first part of this series (Adler 1984), the transport properties of a Leibniz packing 
were calculated in the lubrication limit. In consequence of its structural simplicity, the 
packing was compared to an electrical network and the equivalent resistances and conduc- 
tances could be derived by elementary means such as the star-triangle transformation. 

In this issue, we wish to describe a general class of fractal structures, which consist of 
capillary networks and to calculate the flow and the pressure inside such a network. The 
practical, and potential, background of such a contribution is obviously related first to 
natural porous media, which are often schematized by consolidated arrays of interconnected 
capillary tubes. Moreover, most porous media can be considered as homogeneous at a 
macroscopic length scale, but heterogeneous at a local scale. The global homogeneity is 
related to the global translational invariance at this scale, while the local heterogeneity is 
itself related to a local dilational invariance. This dilational invariance can be schematized 
by a fractal structure. For instance, a percolating network is fractal at small scale (see 
Stauffer 1979). Potential applications to the analysis of two-phase flows through porous 
media may also be foreseen at least in connection with the percolation aspect of this situation 
(Larsen et al. 1981, De Gennes & Guyon 1978). 

Thus, a natural link exists between this issue and a previous series devoted to spatially 
periodic capillary networks (Adler & Brenner 1984 a, b and c). They nicely complement 
each other in view of the potential applications to porous media, which are mentioned above. 
The basic graph of the spatially periodic capillary network would then consist of a fractal 
structure. Hence, the reader will be provided with a fairly complete analysis of both 
structures and with a general formalism. 

Another attractive feature of networks is a consequence of the fact that they are 
relatively easy to analyze when compared to continuum situations where partial differential 
equations have to be solved. But the basic quantities of interest do have the same behaviour, 
whether they are continuous or discrete. For instance, the flow rates (or the velocity field) in 
a spatially periodic medium are spatially periodic as a result of the geometric periodicity of 
the medium. The analogous feature is expected to occur here, since it is geometric in nature. 
Thus, the solution of a discrete situation will hopefully suggest and support the basic 
assumptions which can be made for continuous fields. 
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To the best of our knowledge, there have been no similarly oriented contributions. 
Certainly, Mandelbrot's book (1982) constitutes the most fascinating introduction to the 
field. In ad,~ition to the references cited in the first part of this series (Adler 1984), the 
following ones devoted to superconductivity of networks may be of interest here, Alexander 
(1983) and Rammal et al. (1983 a and b). 

This paper is organized as follows. The second section is devoted to the description and 
definition of a fractal capillary network, which is assumed to be self-similar. The general 
definition due to Hutchinson (1981) is transposed to the present case; mathematically 
speaking, an invariant compact set can be viewed as a union of images of itself by contraction 
maps. In continua, the geometry generally imposes severe constraints, which can be skipped 
in discrete situations. A discrete fractal may be constructed with two ingredients; we start 
with a given finite graph Fo, called the basic graph. Then, a new graph Ft is obtained by 
combining a finite number of basic graphs Fo according to a given recipe. A second graph F2 
can be generated when the graphs F~ are combined according to the same recipe as before. 
This process can be indefinitely continued and a self-similar fractal is generated. An 
algebraic analysis of the construction process is offered. 

In section 3, the Stokes flow of a Newtonian fluid in the capillary network symbolised by 
the basic graph F0 is analyzed. This provides us with the opportunity to recall some 
elementary properties of this linear problem and to make clear the analogy between it and its 
electrical counterpart. A transfer matrix Ao is introduced; it relates the flow rates and the 
pressures at the external vertices of the basic graph F0 

The central section of this paper is 4, where the Stokes problem is solved on the fractal 
graph Fs; it depends upon both the initial graph Fo and the construction process. The transfer 
matrix As which relates the flow rates and the pressures at the external vertices of the graph 
Fs are explicitly calculated by means of linear algebra, making a full use of the algebraic 
description of Fs. The major result of this section is the derivation of a general iteration 
formula between As and As_,, which turns out to be nonlinear. It is only in the limit, i.e. near 
fixed points when they exist, that this expression can be linearized; it yields the so-called 
linear fractal relation between t_wo successive generations, Hence a clear distinction is drawn 
between the general nonlinear regime and the final fractal regime. 

In order to illustrate the previous abstract developments, section 5 is devoted to the detailed 
treatment of two examples. The first one is the classical Sierpinski gasket; an application of 
the general formula yield s the usual 3/5 constant; in this case, the linear character of the 
relation is a consequence of the isotropy, since an anisotropic gasket yields a nonlinear 
relation. The second example tentatively describes the injection of a fluid inside a porous 
medium; it is also reminiscent of the structure of polymers adsorbed on a solid surface. 

All the results are briefly discussed in section 6. The construction of the network can be 
generalized in several ways, as it was noticed in connection with the second example. The 
formal structure of the result is compared to the one obtained in a spatially periodic network. 
The fractal properties of the various quantities of interest are analyzed in view of their 
applications to continuous fields. The interaction between anisotropy and nonlinearity is 
briefly discussed. Finally, the permeability of a spatially periodic network, whose basic graph 
is a fractal is calculated. 

In view of the abstract character of the following developments, the reader may find it 
useful to have general references on the subject and an alternative way to read this paper. A 
general introduction to algebraic graph theory,has been written by Biggs; however, some of it 
is presented in a previous paper of Adler & Brenner (1984 a) for spatially periodic networks. 
The reader may skip the first few sections and go directly to section 5 which is devoted to two 
examples of fractals; his geometrical insight may of course be stimulated by Mandelbrot 
(1982). Then, he can come back to the first sections of this paper. 
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2. G E O M E T R I C A L  D E SC RI PT I O N  OF A FRACTAL C A P I L L A R Y  N E T W O R K  

Hutchinson (1981) defined an invariant compact set K ~ R n as a set such that 

M 

K -  U s°K, [1] 
a - l  

where {So, a - 1 . . .  M} is a finite family of contraction maps on R". Often, but not always 
the So are similitudes. 

Hutchinson (1981) also gave some examples such as the Cantor set and the Koch curve 
which clearly show how the final invariant set K may be constructed by successive 
applications of the family contractions. 

The fractal capillary network is constructed in a similar manner here. We shall start with 
an elementary graph Fo which is called the basic graph. Then a finite family of transforma- 
tions So is applied to ro; M finite graphs S,,Fo are obtained, which are connected in a 
specified way. A new graph r~ is obtained and the previous process may be applied again. 
This is illustrated in figure 1. 

Let us first describe the basic graph Fo. The minimum amount of graph terminology is 
introduced when needed; most of it was already used by Adler & Brenner (1984 a, b, and c). 
Note that an excellent introduction to algebraic graph theory has been written by Biggs 
(1974). 

A finite capillary network may be schematized by a finite graph Fo, when a clearcut 
distinction exists between the junctions themselves and the capillaries connecting them. In 
place of the physical terms "junctions" and "capillaries," we shall employ the graph terms 
"vertices" and "edges," respectively. Hence, I'0 may be considered as 

a set VFo of n vertices v; connected by 

a set E Fo of m edges ej 
[2] 

The relations between vertices may be represented by the adjacency matrix 04 of the 
graph, and the relations between vertices and edges by the incidence matrix D (cf. Biggs 
1974 for a complete definition). 

I" 0 is assumed to be connected, i.e. every pair of vertices may be joined by a walk. 

X s x  
v,:, X 

r'. C' 
a b c 

Figure 1. Construction of a fractal. (a) The basic graph re with its n, external vertices v~ "~ and its 
tf - n, internal vertices v~ °. (b) The transformations S , ( a  - 1 . . . . .  M )  yield the graph FI made of 
the juxtaposition of the M transformed graphs Sara. (c) These graphs are then interconnected in a 
specified way to form the graph Ft. Note the distinction between the external vertices v~ ">1 of I'~ which ,(tk. 
become internal vertices of FI, and the external vertices v~ of 1"~ which become external vertices of 

Ft. 
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Two kinds of vertices are distinguished in Fo (cf. figure la): 

ne external vertices (e) Ui , 

n - n, internal vertices v} °. 
[3] 

Of course, the external vertices are connected to external pressure generators and are the 
vertices by which flow rates go in and out the piece of porous material symbolised by Fo. We 
shall come back to this point in section 3. 

Algebraically, a projection operator H °" can be defined on VFo as a square n x n matrix 
where only the diagonal elements may be nonzero: 

n°"={10 otherwise.if v' is an external vertex' [41 

Hence, on vro,  the vector v (") corresponding to the external vertices may be obtained as 

v (') - H °" • 1 ,  [51  

n 

where 1 denotes the vector ~ t  on Vro. 
Consider a given family of transformations S~ (a - 1 . . . .  M) which act on the basic 

graph r0, in a manner which will be specified later. The construction of the graph rm requires 
two steps (cf. figure 1). First the graph r'~ is defined as the juxtaposition of the graphs So ro 

M 

r', - U '  so ro, [6] 
i - I  

where U' denotes the juxtaposition without any interconnections between the external 
vertices of the graphs S,  Fo. 

Second the external vertices of the elementary graphs S~ Fo are connected one to the 
other one in a specified way 

M 

r , -  U &ro ,  [71 
i-1 

where U stands for the interconnections. 
Let us assume that the interconnections are defined in such a way as to leave n, external 

vertices to the graph Ft. Hence, the process can be indefinitely continued; F~ may be 
expressed as 

M 

r . -  U sor _,. [81 
a - I  

Note here that the cartesian concept of coordinates can be generalized to fractals in the 
following way. In F~, a given graph Sa Fo can be determined without any ambiguity by the 
integer ot of,.,ca. After N generations, Sam " • " Sa, • . . S,, Fo, may be simply referred to by 
the sequence of the N integers ranging from 1 to M 

{cq • • • a j .  • • aN}. [9] 

Further technical details may be found in Hutchinson (1981). 



STOKES FLOW IN FRACTAL CAPILLARY NETWORKS 217 

This localisation of a part of a fractal by a sequence of integers may be usefully compared 
to the localisation of a part of a spatially periodic medium by three integers in R 3 (eL Adler 
& Brenner 1984 a). 

We shall not insist very much on the transformations S~, which can belong to a very large 
class. Usually, S~ consists of the multiplication of all the lengths involved in a given geometry 
by a factor ?~. For instance, in the usual three dimensional space R 3, the length of a capillary 
is multiplied by )~ and its section by ?~2. However, more complex rules of the game may be 
given and one is only limited by the physical relevance of the chosen transformation; edges 
may be delected or added and so on. A large class of transformations Sa may be represented 
by a linear relation between the transfer matrix of to and the transfer matrix ofSa r0, as it is 
detailed in section 4. 

In the rest of this section, we shall be exclusively concerned with the connections between 
the external vertices of the various S~ Fo and by their algebraic representation. 

In order to remain as simple as possible, the following restrictions are made on these 
connections. 

It is assumed that an external vertex of Sa ro may either become an external vertex of rl 
or be connected to another external vertex of So, to. Hence, connections between external and 
internal vertices of different subgraphs arc forbidden. Moreover, an external vertex of Sa Fo 
cannot be left dangling. Multiple connections between three or more external vertices are not 
allowed. 

Certainly, these restrictions could be removed without any serious troubles and could be 
taken into account by simple modifications of the algebraic manipulations. However, this 
would bring into the theory unnecessary complications which would obscure its meaning. 

The connection between various external vertices of the graphs S~ F0 is equivalent to the 
superposition of some of the Mn¢ external vertices of the graph r~. Since rl is required to 
possess n~ external vertices, it turns out on elementary grounds that (M - 1)n~ must be an 
even number. 

Let us now algebraically describe the superposition of some of the Mn¢ external vertices 
of the graph r~. First a clear distinction must be drawn between the Mn~ - ne external 
vertices of r~ which become internal vertices of rl (they are denoted by v~ (~) and the n, 
external vertices of r[ which become the n¢ external vertices of rl (they are denoted by v[ (¢)~). 
This is illustrated in figure lc. 

Two projection operators can be defined when necessary on the vertex space vr~. I~ ,'(:) is 
the projection on the vertices of r'l which becomes internal; ~'(~) is the projection on the 
vertices of r'l which become the external vertices of r~. The definition of the corresponding 
Mne × Mn, matrices ~"(i) and ~,c~ parallels the relation [4]. 

On the vertex space V r'l <~): of the (M - 1)n, vertices v~ c~, the superposition of two 
vertices may be symbolized by the (M - 1)n~ x (M - 1)n~ matrix T defined as 

T o - I when the vertices v~ (")' and v~. ~i are superposed, 

Til - 0 otherwise. 
[so] 

Note that T completely describes the transformation of r~ into rl.  "7" has many elementary 
properties as a consequence of its definition and of the restrictions placed upon the 
transformation of r'l into rj .  It is symmetric. It has only one 1 in each line and each column. 
The repeated application of two transformations T on the vertex space V r~ e) yields the 
initial vertices; hence T is idempotent and is its own inverse 

T 2 - I ,  T - ' T  -I. 

'l" has no diagonal element, which would correspond to a forbidden dangling vertex. 

[11] 
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This matrix is illustrated at length in section 5, to which the reader is referred. 
An important condition is imposed on r~; it is assumed to be connected, i.e. every pair of 

vertices of r ,  may be joined by a walk. The condition for this property to hold may be 
expressed as follows. Instead of using the detailed relation [10], a new graph r'{ may be 
defined, r~' contains M vertices {v~; a = 1 . . . . .  M}, which correspond to the M subgraphs 
[Sa to; a = 1 . . . . .  M} of I'~. Two vertices v~ and v~ of r'{ are connected by an edge if the 
subgraphs S ,  ro and S B r0 have a common external vertex. The adjacency matrix o~'~' (cf. 
Biggs 1974, p. 9) of this new graph r'( may bc introduced. Since r0 is connected, the 
connectivity of r~ is obviously equivalent to the connectivity of r'{. It is known as a general 
result from graph theory (cf. Biggs 1974, p. 13) that r',' is connected if and only if (o~'( + I) ~ 
has no zero entries. 

This terminates the general description of a fractal capillary network. It is useful to note 
that our fractal definition does not allow relations between subgraphs which are not nearest 
neighbours, so to speak. Relations are only permitted between graphs of the same 
generation. 

It is always fruitful to make a parallel between the fractal and the spatially periodic 
characters. The basic graph r0 plays the same role in both situations, hence its name. The 
matrix 7" stands for the relations between the unit cell and its neighbours in the spatially 
periodic case. Hence, the restriction just mentioned about fractal networks is equivalent to a 
spatially pcriodic graph where only nearest--neighboured cells are interrelated. 

3. S T O K E S  F L O W  ON T H E  BASIC G R A P H  

This section is devoted to the elementary analysis of Stokes flow on the basic graph Fo. Of  
course, it is well known and described in many references (see for instance Biggs 1974 and 
Bollob~s 1979). The basic features of these solutions are given. 

Consider the piece of porous medium symbolized by the graph to. A priori, we are only 
interested by the relation between the flow rates going in and out of the material, and the 
pressures imposed at the external vertices (figure 2a). This relation is linear when the fluid is 
Newtonian and when the Reynolds number is everywhere vanishingly small. 

To each external vertex of r0 can be associated a pressure and a flow rate, with the 
arbitrary convention that the flow rate is positive when it goes out of to. Hence, the n, 
pressures and the n, flow rates can be represented by the vectors PCo') and J~o '), respectively, 
which are defined on the space of the external vertices V rio "). The linear relation between 
these two vectors may be expressed as 

j(oe ) = 1 Ao. e~o "), [I 2] 
# 

P.,~ J.~ 
2 /  1 2 

"15"" 

o b 

Figure 2. Stokes flow on the basic graph Fo. (a) The external vertices 1 to 5 are represented together 
with the corresponding pressures P~o~ ) and outgoing flow rates J~) (i - 1 . . . . .  5). (b) The graph % on 
which the matrix a o [cf. [15] ] is determined by use of standard methods of graph theory. Generators 
whose strength is equal to the relative pressures are positioned between n, - i external vertices and 

for instance the last one. 
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where Ao is a n, x n, matrix, that we call the transfer matrix of the graph I'0. t~ is the viscosity 
of the fluid. 

Ao is generally symmetric, as it will be shown later, but it is noninvertible for the 
following reasons (its rank is actually equal to n, - 1). First, the flow rates do not vary when 
an arbitrary constant is added to the pressures; hence, 

A o ' l = 0 ,  [13a] 

where I denotes the vector ( 1 . . .  l i t  on V I'~0 "~. Second, the sum of the outgoing flow rates is 
equal to zero, as a direct consequence of the conservation of the flow rates at each vertex of 
the graph F0. Hence, 

I t  • Ao = 0 [13b] 

which is identical to [13a] since Ao is symmetric. 
This unessential undeterminacy can be removed by choosing an arbitrary vertex, say the 

( e )  last one v, , ,  which is assumed to be at a zero pressure. Moreover, the flux J~!,, is given by 

h e _  I 

J(') ~ J~!. [14] O,n e ~ - -  

i - 1  

/at,). i 1, ne 1) may be The remaining unknowns tr¢,), i 1, n, 1) and ~-oj, ~.o, 0 , i 9  ~ . . • , ~ ~ . • • , - -  

represented by the vectors j~d ) and pCg), respectively. They are linked by the linear relation 

1 
j{o "~ = - ao.  p~o '~, [I 5] ~z 

where ao is an (n, - 1) x (n, - 1) invertible and symmetric matrix. 
a0 can be calculated by a direct application of a process described for instance by 

Bollobas (1979). Equation [15] actually corresponds to the situation illustrated in figure 2b. 
Additional edges are added between the first n, - 1 external vertices and the last one n,; 
pressure generators, whose strength is equal to the relative pressures, are supposed to be 
located along these edges. 

Three sets of equations are written on this new graph 3'0, which has n vertices and 
m + n~ - 1 edges. The conservation of the total flow rate is expressed at each vertex. The 
pressure difference is zero along every cycle of the graph 3'0. Finally, the pressure difference 
between two adjacent vertices i and i' is proportional to the flow rate J ( j )  between these 
vertices. Explicitly, 

p(i)  - p(i ' )  - # s ( / )  J ( j ) ,  [161 

where j is the number of the oriented edge {i, i'}. s ( j )  is the "pressure drop-flow rate 
conductivity" coefficient along the edge j. When the capillary j is a cylinder of radius R ( j )  
and length L ( j ) ,  the Poiseuille's law applies (Happel & Brenner 1965) and s ( j )  can be 
expressed as 

8 1.(j) 
s(j) = g .  R ' ( j ) "  071 

It is interesting to note that, when all the dimensions are multiplied by a factor ~,, s ( j )  is 
multiplied by h -3. 
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The three mentioned sets of equations enable us to express the flow rate vector J0 (defined 
on the edge space of 3'0) as (Biggs 1974) 

1 
J0 ffi - - C .  ( C t .  M .  C ) - ' .  C t -  z,  [181 

# 

where M is a (m + n, - I) x (m + ne - 1) conductance matrix whose the first in diagonal 
elements are equal to the resistances s ( j ) .  C is the (m + n, - 1) x (m + n, - n) cycle matrix 
of 3'0 (cf. Biggs 1974, p. 31 ). Z is the voltage vector; here, its components are zero except on 
the last n, 1 additional edges where they are equal 'o n~,) - -  t P0d" 

Hence, ao is readily deduced as a submatrix of [18] from which its symmetric character 
follows. Note that it is also negative definite. 

It is easy to show that Ao may be derived from ao as 

~ -- , - - l - - -  

a o - a o • 

1[  - l ~ f . a o  l t . a o  [19] 

n,7- I 

where 1 denotes the vector ( 1 . . .  l i t .  The requirements [13] are obviously satisfied by Ao. 
As a conclusion of this section, both formulations [ 12] and [ 15] are of course correct. As 

it is shown by [18], [15] is usually the most natural starting point, especially when ro is a 
complicated graph. In the following, [12] is usually used though it is not invertible. A last 
important feature of Ao and ao is that they only depend upon the geometry of the network. 

4. S T O K E S  F L O W  O N  T H E  F R A C T A L  C A P I L L A R Y  N E T W O R K  

4.1. Basic relations 
Let us denote by Jl ') the vector defined on the subspace VF} ") of the external vertices of 

F~; Jl eJ represents the n, flow rates going out o f t , .  Similarly, the n, pressures at these vertices 
are represented by the vector P~'). Paralleling [12] and [ 15], the following relations hold for 
these two vectors 

- _l A , .  p?' [2Oa] 
# 

or equivalently, 

j~) 1 p~). 
- - al  • [20b]  

# 

One of the major purposes of the present paper is to calculate in a general and convenient 
form these matrices A, and a~ as a function of the structure of the basic graph ro represented 
by its matrices Ao or ao, as a function of the family of transformation S,(ot - 1 . . . .  , M )  and 
as a function of the interconnection between the graphs S,I'o (or - 1 . . . . .  M )  represented by 
the matrix T.  This relation may be expressed as 

A, - F,,v (Ao), [21a] 

a~ - F,.v (ao), [21b] 

where Fs.~- and f,.~- are two tensorial functions which will be determined. 
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More generally, this calculation can be extended to any iteration of rank N 

j~,  = 1 A ~ .  P~) [22a1 

or equivalently, 

j~) 1 
- - a#. p~), [22b] 

/z 

where, by a straightforward application of [21 ], 

, N - - -  
[23] 

Arc - F(. • • F(Ao) • • .). 

Advantage will also be taken of this general structure to give some of the major field 
properties which can be expected in the continuous ease and which will be used in a future 
outcome of the present series. 

4.2. Description of the assemblages 
Let us recall first that r't was defined by [6] as the juxtaposition without intereonnections 

of the M subgraphs s ,  r0. An external flow rate vector J'~') can be defined on the space vr'~ ¢') 
of all the external vertices of the graph r[ ;  of course, V r'~ <̀~ is simply the union of all the 
external vertices of the transformed subgraphs So r0 (a - 1 . . . . .  M);  hence, 

M 

vr',(" = ~_J s.(vr~o')). [241 
a - I  

J'z <~) is thus given by 

J'n (e) 

~Su JCo'l 

[25a] 

and similarly, 

p~') - 

ISl PCo')~ 

s~ p~o "~ 

~Su P~o '~ 

[25b] 
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On the graph F't, which is generally disconnected, the relation between the flow rate vector 
J'(') and the external pressure vector P't (') may be expressed as 

j,t(~) _ 1 
# 

'St 

S~ • P't ('), [26] 

SM 

where S, denotes the matrix Ao as transformed by the contraction S~ 

S~ = S,(Ao). [27] 

As it was discussed in section 2, we shall limit ourselves to invertible linear transformations 
S~. In the simplest case of a uniform change of dimensions X, and of Poiseuille flow in 
cylindrical capillaries [cf. (17)], S, is elementary deduced as 

S~ = X +3 A0. [28] 

In the examples detailed in the next section, X will be usually equated to 1. 
Note that an example of nonlinear transformations S~ were given in the first issue (Adler 

1984 a) of this series. 
The relation [26] may be briefly written with the use of a Mn, x Mne matrix ~p 

j,,(,) ~ 1 ~P" p,(,) [29] 
# 

which can be rearranged as follows. Let us renumber the external flow rates and pressures 
as  

J'" - )' [3ol 

(F")' I 
P'.(') - ~p~,) }. [31] 

The first (M - 1)n, flow rates or pressures correspond to the (M - 1)n, external vertices 
v[ ('); of I"~ which become internal vertices of I'~. The last n¢ flow rates or pressures are thus 

¢o of I'; which become the final external vertices of I'j relative to the ne vertices vtj 
Hence, the matrix ~, can be subdivided into the four blocks corresponding to this 

distinction 

- , [32] 
~O21 ~22] 

where¢ll,  ~ot2, ~2t and ~22 are (M - 1)n, x (M - 1)n,, (M - l)n¢ x n,, n, x (M - 1) and 
n, x n, matrices, respectively. Moreover, 

~O21 -- ¢P~2, ¢Pll - -  ~[ I ,  ~22 - -  ~O~2. [33] 
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When the M subgraphs Sa Fo (a l 1 . . . . .  M)  are connected according to the law 
symbolized by T [cf. [10]], it implies that the flow rates are equal and opposite (recall the 
algebraic convention) and that the pressures are equal at the vertices which are connected 
one to the other one. This may be expressed as 

T • J',(¢)' - - J'l (~)i, [33a] 

T • P'I(°' ~ P'I (')', [33b] 

which provide 2 (M - 1)nr relations between the flow rates and pressures. However, exactly 
one half of these relations is redundant as a consequence of the symmetric character of the 
matrix T .  For instance, [33a] implies 

j , ( ¢ )  l , ( e ) i  
I~' l  1 - -  ¢ 1 , i 2  

and simultaneously, 

j , ( e ) i  ? t ( e ) i  
I,i2 ~ - -  . l  l . i l  • 

In order to avoid these redundancies, new matrices L and .£ must be introduced. Let us 
first define the matrix T + as 

_I"l'ij, i<j 
T~ [0, i>j. [34] 

Then + 1 (for L) or - 1 ( fo r  f ' )  is added to the first diagonal of 'T + each time that there is 
already I in the corresponding line. Then the matrices L and .£ are obtained by deleting the 
lines composed of 0 only. 

This process is illustrated by the elementary example shown in figure 3. 
L and .£ are ( M  - l)(nr/2) × ( M  - 1)n, matrices which possess the elementary 

properties 

L .  Z t  l O, L .  L t  - 2 I, Z .  Z t  - 2 I. [35] 

The proof of these relations readily follows from the definition of these matrices; they may be 
verified in the example of figure 3. 

1, .2 
1 2 

• 3 4 
3" 4 

Q b 

Figure 3. Illustration of the calculation of L and .£. Four vertices 1, 2, 3, 4 are given in (a). Then 1 is 
connected to 4, and 2 to 3. Hence, 

0 1 O0 0 1 
¢~ r ' _  , ~ t  l , 

1 0 0 0 

0 0 0 0 (:oo:) (: oo:/ 
L -  , . £ -  . 

I I - I  I 
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With the use of these two matrices, the equations [33] can be replaced by the 
nonredundant set of ( M  - 1)n, relations 

L • J'l ~')i = 0, [36a] 

1: . p,t,~i = 0, [36b] 

which completely describe the assemblages. 
Of  course, the vectors j]t,~ (p,t,~i) is composed of ( M  - 1)n, components which are two 

by two opposite (equal), say 

j,~(~)i = 

KI \ 

KI 

-K2 

- K  t 

[37] 

and the equivalent relation for P'~¢');. 
This property may be phrased differently. The vectors J'~¢')i and P]t')~ belong to the kernels 

of L and £ ,  respectively. It is more convenient to introduce new and nonredundant flow rate 
and pressure vectors J'J and P';, each of them possessing ( M  - l )n, /2  independent 
components, and such that 

J'j{~>~ = .£'{" • J", [38a] 

P]~'~' = LI" • P". [38bl 

Hence, two unknown but related values ofJ~ ~'~; (or P'jt')i) correspond to one unknown value of 
J'~ (or pa).  With this formulation, [36] are automatically satisfied. 

4.3. Calculation of  the first iteration 
As a pleasant consequence of these lengthy preliminaries, the actual solution of the 

problem is now at hand. 
Introduction of [30] and [32] into the general relation [29] yields 

j,~,~, - 1 ( ¢ , , .  p,~,~i + ¢ , , .  pi,~), [39a1 
tz 

S~) = 1 (¢2, • P'{')' + ¢22" P]')). [39b1 
tz 

[39a] is composed by ( M  - 1)n, relations and [39b] by n, relations. 
The solution is obtained as follows. [39a] furnishes ( M  - 1)n~/2 relations, from which 

the components of the vector P" can be deduced. Introduction of these values into [39b] 
yields the desired relation between Jl "~ and P~'). 
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Let us now detail and discuss this solution. When [39a] is multiplied at its left by L, its 
left-hand side vanishes as a consequence of [36a]. Introduction of [38b] yields 

L • vh, • L'F • P" + L • ~o12 • P~') - O. [401 

This matricial equality is equivalent of (M - l )n , /2  relations between the (M - 1)n,/2 
independent components of P';. They can be calculated in function of P~') when L • ~ • LT is 
invertible, a property which is now discussed. 

The matrix L • ~oll • Lt" is square, symmetric and has (M - 1)n,/2 lines and rows. On 
intuitive grounds, it is expected to be invertible since one should not encounter any difficulty 
in solving the corresponding physical problem, which is equivalent to the calculation of the 
pressure at some inner vertices, in function of the pressures in a connected graph. 

This qualitative argument may be sharpened as follows. Actually, the trouble is mostly of 
a technical character, which is related to the invertibility of the matrix ao, and to the 
non-invertibility of Ao. First, suppose that the graph I'l is composed of n, - M subgraphs 
S~I'o, each of them having one and only one vertex which becomes an external vertex of I'~. 
Hence, in a given subgraph S~I'0, the origin of pressure may be assigned to this external 
vertex. When ~o is rearranged according to [32], the part of S~ which remains in ~o~ is 
invertibl¢ since it is S,(ao). Hence, ~u is invertible, since it is composed by n, - 1 blocks 
which are themselves invertible. 

Second, suppose that M is strictly larger than n,; thus, some subgraphs SoI'o do not 
possess any external vertex of I'~. However, since F~ is assumed to be connected (see section 
2), these internal subgraphs may each be linked to at least one subgraph with one external 
vertex. When this is done for all the internal subgraphs, we are back in the first case. 

Third, it may happen that one subgraph S~I" o has two or more external vertices. This 
subgraph may be subdivided into parts having each only one external vertex of I't and thus 
we are back in the second case. 

Hence, we may write 

P " -  - ( L .  ~Oll • L"f) -I • L • ~Pl2 " P~*)- 

Introduction of this equality and of [38b] into [39b] yields the final result 

[41l 

j~.) - 1_ [ - ~ 2 ,  • L t .  ( L .  ~oH. L t )  -~ • L .  '#,2 + ~022] P~') 
# 

[42] 

which is the desired relation between J~') and P~') according to the definition [20a] of At, we 
obtain 

Ai - - ,p]2 • LT • ( L .  ~#ll " L t )  -I " L .  ~ol2 + ~O22 [43] 

which is satisfactory both by its generality and compacity. It is obviously symmetric in view 
of [33]. From the previous developments, it must be reminded that AI is not invertible. 

4.4. The general iteration formula 
Now we are in a convenient position to detail the functional relation between Ao and At as 

it was expressed by F in [21a]. In order to do that, the relation between ¢ and Ao must be 
explicited since it was somewhat masked by the general expression ~. 

As previously stated, the transformation S~ has been assumed to be a linear operator [cf. 
[27]]; hence, 

where sa is a n, x n, matrix. 

S~ - s~. Ao, [46] 
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Then, ~o may be expressed as 

~ f f iS  • E:Ao,  [45] 

where S is a Mn, x Mn, second-order tensor, which can be written as 

S ffi 

P$1 

s~ [46] 

SM 

E is a Mn, x Mn, x n, x n, fourth-order tensor such as the matrix `% is replicated M times 

`%'"Ao) 

E :`% ffi . [47] 

Introduction of [46] and [47] into [45] obviously yields an identity. The general 
component of the fourth-order tensor may be expressed as 

[ ] " ~(O,k " ~ ( j ) , l ,  [48] 

where [x] denotes the integral part of x and (i) the value of i modulo ne. The Kronecker 
symbol is equal to 1 when its two arguments are equal, zero otherwise. This complicated 
expression automatically ensures the replication of ,% according to [47]. 

Then, ~ was rearranged into blocks in order to leave at its ends the vertices which become 
the external vertices of Pl [cf. [32]]. According to [45] a permutation of the indices of ~o 
corresponds to a permutation of the first index of S and of the second index of E. When these 
two indices are ranging from 1 to ( M  - 1)ne, and from ( M  - 1)n, + 1 to Mn~, the tensors 
SI, El and $2, E~ are obtained respectively. Hence, 

~,i ffi S , -  E / :A o  ( i , j  = 1, 2). [49] 

Introduction of [49] into [43] yields the general expression 

A, - - ( S 2 -  E,  : `%)  • L ?  • [ L .  (S~ • E,  : `%)  • L t ]  -I  

• L . S I . E 2 : , 4 , o + S 2 - E 2 : ` % .  [50] 

The details which are given in this formula certainly obscure the general form of the 
relationship between A~ and `% so its derivation was not presented first. However, it has the 
definite advantage of  being immediately extrapolated to the relation between A~ and A~_ i. 
This relation is merely a duplication of [50] and reads as 

AN = -- ($2 • El :A~-I)  • L t  • [L-  ($I • El : AN-I) • Lt ]  -~ 

• L . S I . E 2 : A N _ I  + S 2 " E 2 : A ~ - I .  [51] 
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Hence, as it was stated at the beginning of this section, one of the primary purposes of 
this paper is fulfilled with the explicit relation [51] between AN_t and A~, i.e. between two 
successive steps in the construction of the fractal. 

4.5. The fractal relation 
The function F [cf. [21a]] corresponding to the general iteration formula [51] is 

obviously nonlinear and thus many different phenomena may happen depending upon the 
particular character of the transformations involved. 

An important simplification occurs when this function F is a linear function or can be 
linearized, in such a way that the iteration formula [51 ] may be written as 

A N -- ~ : AN_I ,  [52]  

where 5 f is a fourth-order tensor that we shall call the fractal tensor. 
Let us now briefly investigate when such a relation can be obtained and how it may be 

deduced from [51]. First, we shall assume that the function F has a fixed point A~, i.e. 

A® = F(A®). [531 

In many cases, such a fixed point is located at the origin, i.e. A,, - 0. Consider, for instance, a 
wire mesh which is steadily increased by successive additions of wires (as the Sierpinski 
gasket that is considered in the next section); when the pressures are held constant at the 
external vertices, the flow rates tend towards zero, from which fact the existence of a fixed 
point is suspected at zero. 

Fixed points may also appear for finite values of A.. For instance, a fractal may be 
defined in such a way that the distance between two external vertices is not modified; a finite 
fixed point is then expected on intuitive grounds. However, the former situation can be 
obtained with an origin shift. 

Serious problems may arise when the unicity of fixed points is examined, not to speak 
about their existence. We shall not deal with these questions here, especially in view of the 
potential applications where the transformations S ,  (a - 1 . . . . .  M)  are not linear. In the 
following, we assume that the starting "point," represented by the tensor Ao, is located in the 
neighbourhood of a given fixed point A® - 0 which is progressively reached by successive 
applications of F. 

Let us further assume that F is differentiable at the origin; it is then an easy matter to 
realize that the fractal tensor 5 r is the gradient of F at the origin 

[541 

Then [52] corresponds simply to the first-order term of the Taylor expansion of F near the 
origin. For sake of clarity, the situation is illustrated in figure 4 for the one dimensional 
c a s e .  

The fractal tensor 5t may be obtained in several ways. The easiest one consists in the 
elementary differentiation of the function F, i.e. 

0Fi j  

~#k,. - OAk., A-O 
[551 

An alternate way consists in using the formal tensor differentiation formula as it is given for 
instance by Truesdell & Noll (1965). 
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F 

X t X~ X, 

Figure 4. Illustration of the iteration process for a one-dimensional situation where F is equal to 
f ( x ) .  The result of the successive iterations are xl - f (xo) . . . . .  x, - fn(x0); this may be 
geometrically obtained with the help of the first intersect (the upper straight and broad line). When x 
is small enough, f ( x )  may be approximated by its tangent if(0) • x (the thin line). The fractal 

constant is equal tof'(0). 

5. EXAMPLES 

In order to illustrate both the construction mechanism and the application of the general 
formulae [51] and [52], two examples are fully explicited. The first one is the classical 
Sierpinski gasket. The second one is less classical, but represents a structure of importance 
both in polymer adsorption on a solid wall and in the injection of a fluid in a porous 
medium. 

5.1. T h e  S i e r p i n s k i  g a s k e t  and  i ts  ex t ens ion  

The construction process is well known and is illustrated in figure 5. The initial "pressure 
drop flow rate conductivity" coefficients are all equal to 1 in the isotropic gasket; for sake of 
convenience, dimensionless pressures, flow r a t e s . . ,  are used; the viscosity of the fluid is also 
equal to 1. 

The relation between the flow rates going out of the basic graph ro [cf. figure 5a] and the 
pressures at the external vertices may be derived from elementary arguments as 

('t (i J , -  - 2  • p , .  

J3 1 - p ,  

[56] 

The relations between the vertices of the three basic graphs Fo when they are assembled 
to give the graph F, (el. figure 5b) are symbolized by the matrix 'T 

/" _ 

¢0 0 1 0 0 0 ~ 

0 0 0 0 1 0 

1 0 0 0 0 0 

0 0 0 0 0 1 

0 1 0 0 0 0 

l0 0 0 1 0 0~ 

[57] 

The internal vertices are assumed to be ordered according to their increasing number, i.e. 
2, 3, 4, 6, 7 and 8. 

L is then deduced according to the process described in the previous section; hence ( OlOO ) 
L -  1 0 0 1 . [581 

0 0 1 0 
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1 

2_ 3 ~ / ~  

2 3 

5 68 9 

a b c 

Figure 5. The construction process of the isotropic Sierpinski gasket. The basic graph l'o is given in 
(a); three basic graphs are used to construct I'~ as it is shown in (b). The basic graph of the anisotropic 

case in given in (c) and the construction process is the same as in the previous situation. 

For the sake of clarity, the three transformations st, s2 and s3 are assumed to be the 
identity. Hence, the matrix ~o is obtained by the juxtaposition of three matrices Ao, as given 
by [56]. Let us order the external vertices o f r l  as 1, 5, 9 (cf. figure 5b); the internal vertices 
of Fi are ordered according to the previous convention 2, 3, 4, 6, 7, 8. The matrices ~Oll, ~Ol2(- 
~O~l ) and ~o22 are derived from ~o as 

r - 2  1 0 0 

1 - 2  0 0 

0 0 - 2  1 

0 0 1 - 2  

0 0 0 0 

0 0 0 0 

0 O' 

0 0 

0 0 

0 0 

- 2  1 

1 -2  

rl o o 1 

1 o o 

o 1 o 

o 1 o 

o o 1 

~o o 1~ 

f - 2  0 - i )  
, ~o22 - 0 - 2  . 

0 0 

[591 

It is now a simple matter for the reader to perform the calculations as they are given by [43]; 
we obtain 

whose inversion is immediate 

L • ~Otz • L t  - - 4  

( L -  ~Oll • L t )  -I m B 3 . 

1 
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A~ is obtained after a few more steps as 

Am i) - -2  

1 - 

i.e. the result 

Aj = 3/5 Ao [60a] 

which can be readily derived by an application of the classical startriangl¢ transformation. It 
is very gratifying to derive this expected 3/5 coefficient through the general formalism 
worked out in section 4. 

The function F is thus very simple, since it is reduced to the multiplication by the 
spherical tensor 3/5 • I. The fractal tensor 5 r is "equal" to the constant 3/5. It will be seen 
below that the linear character of the relation [60] is related to the isotropy of the Sierpinsky 
gasket as shown in figures 5a and 5b. 

If the transformations S= were not the identity anymore, but given by [28] for instance, 
then the relation [60a] would have to be modified as 

A~ - 3/5 • ~,+3 Ao. [60b] 

Let us now investigate the influence of anisotropy on the iteration formula. The simplest 
extension of the previous gasket is shown in figure 5c. Two sides of the basic graph 1"0 have 
equal resistances (arbitrary equated to 2); the third side has a resistance o:. First, it is 
possible to show by symmetry arguments that AN has the general form 

A N 

/-2 aN aN a: t 

aN aN b~ ) ,  

aN bN a~ 

[61] 

where aN - - (aN + bs). The initial values ofao and be are equal to 

ao - - 0 . 5  - 1./a', 

be " 1./a' 
[62] 

as it may be shown by analysis of the basic graph 1"o. 
The iteration process may be summed up by the formulae 

A~v- 2JaN(aN -- 2 aN) 2 + bN a~ -- a~(aN -- 2 aN) -- b2~ aN], 

YN - 2 bN a~(bN -- aN + 2 aN) + b~(aN -- 2 aN) 2 -- b~v, 

I 
aN+, - - ~--~. {a~- [2 aN(aN -- 2 aN) - a 2] + YN} + aN, 

I 
bN+, - - "=--. {a~v(a~, - 2aNbN) + YN}. 

~N 

[63] 

This iteration is illustrated in figure 6 for various values of the anisotropy parameter a ' /2.  
Several comments may be offered on these results. Note first that the Sierpinski gasket 

can also be calculated as an application of the classical star-triangle transformation, which 
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--,,,%\ 
\ \ \ \ ~  \ 

1 2 ~ 4 ; ~) ~ i 6 N  

Figure 6. The coefficient - a  (solid lines) and b (broken lines) as functions of the number of 
iterations N. Values ofa ' :  0.2 (1), 2 (2), 12 (3). 

was extensively used by Adler (1984) in the Leibniz packing. This alternative route to [63] 
was actually used in order to check both our analytical and numerical results. 

Usually, the fractal character is only obtained after several iterations. This is a direct 
consequence of the "'nonlinearity" of [63], which is actually induced by the anisotropy of the 
gasket. However, the fractal limit is generally obtained pretty rapidly, i.e. after a few 
iterations; this feature was already present in our previous paper (Adler 1984). 

Finally, the fractal coefficient is always equal to 3/5, irrespective of the degree of 
anisotropy as measured by the value of the coefficient a'. Hence, it depends upon the 
structure of the iteration process and not upon the particular values of the coefficient which 
is under consideration. 

This may be proved in the following way, as suggested by one of the referees. The 
iteration formulae [63] possess a solution of the form 

au - KI pN, bu - Ks pU. 

By substitution into [63], the values of Ks/K1 and p can be obtained. It is easily shown that 
they do not depend upon or'. K2/KI is the solution of the equation 

that is to say 

/(2 1 
m I - -  w m Kj + 1, 1, 2 '  

[K21 s 1(2 
1 3 

Only the last value 3/5 is obtained from the numerical data. Note that, in figure 6, the 
final ratio - 1/2 is not always obtained after nine iterations. 
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J 

o c 

9 10 

1 2 1 25  6 ~- ~ 

4 3 4 38 7 4 

bl b 2 b3 

Figure 7. Injection of a fluid into a porous medium. The fractal considered in the references is shown 
in (a). For sake of convenience, it is replaced by the fractal (c) with the construction process described 

by bl, b2, b3. 

5.2. Injection o f  a fluid into a porous medium 
For fractal structures, a second typical situation is found in physical problems where the 

correlation length of the structure is equal, or related to the distance to a line or a wall (in 
two- and three-dimensional problems, respectively). The picture may be drastically schemat- 
ized by the structure represented in figure 7a. The "radius" of the loops is equal to the 
distance of the center of the loop to the wall. This has already been used and discussed by De 
Gennes in two very different physical contexts. The first one corresponds to the adsorption of 
a polymer coil onto a wall (De Gennes 1979); it will not be discussed here and its analysis is 
postponed to a future issue of this series when flow in continuous fractal structures is studied. 
The second one is of very high interest here, since it happens when a fluid is injected into a 
porous medium (De Gennes 1983). A first approximation consists in the representation of 
the porous medium by a square lattice of capillaries; the injection of a fluid thus yields the 
picture given in figure 7a. 

However, such a structure cannot be exactly obtained by the process which has been 
described in the previous sections. It differs from it in two aspects• An external part, that will 
be called the hat for obvious reasons has to be added to complete a generation; this can be 
easily incorporated in the theory, and the example is worked out below with this original 
feature. Moreover, some edges should be deleted and the equality (within a sign change) of 
flow rates and pressures should be written at an increasing number of vertices. 

This second feature has not been incorporated in the example (we shall come back to this 
point at the end of this section). The fractal shown in figure 7c is obtained in lieu of the one 
shown in figure 7a; the construction process is illustrated in figures 7bl, 7b2 and 7b3. 

Using elementary arguments, the linear relation between the outgoing flow rates and the 
pressures at the four external vertices (of. figure 7bl) may be expressed as 

' 0 t -- --2 0 l --2 '1 -- P2 

P3 

P4 

[64] 

As in the previous examples, all the quantities are assumed to be dimensionless and all the 
resistances in the initial square are equal to 1. 
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Let us now describe the iteration procedure. The union of two squares (cf. figure 762) is 
described by the matrices 'T and L 

0 0 0 1 
T -  , L -  , [65] 

0 0 1 0 

1 0 

where the internal vertices in I'~ have been arranged in the order 2, 3, 5, 8. 
When the vertices in I"~ which become external vertices in I"~ are arranged in the order 1, 

4, 6, 7, the matrix v' can be decomposed into four equal blocks 

AN(l, 1) AN(l, 4) 0 0 ) 

AN(4, 1) AN(4,4) 0 0 

¢ " - /  00 0 AN(2,2) AN(2,3) ' 

0 AN(3, 2) AN(3, 3) 

[66a] 

~ 1 2  m ~02fl I 

~AN(1, 2) AN(l, 3) 0 0 \ 

AN(4, 2) AN(4, 3) 0 0 

0 0 AN(2, 1) AN(2,4) ' 

0 0 AN(3, 1) AN(3, 4)] 

[66b] 

~022 

LAN(2,2) AN(2, 3) 0 0 \ 

) AN(3, 2) AN(3, 3) 0 0 

0 0 AN(l, 1) AN(l,4) 

0 0 AN(4, 1) AN(4,4) 

[66c] 

Hence, when the calculations described by [43] are performed, we can obtain the relation 
(corresponding to the situation illustrated in figure 7b2) 

- ( A ~ ,  . . 

J, p, 

J4 P4 

[67] 

where A~, B~,, C~ and D~ are 2 x 2 matrices. 
The "hat" [ 1, 9, 10, 6] has to be added in order to finish the construction of the fractal. 

Consistently, the resistances of the edges [1, 9], [9, 10] and [10, 6] are equal to 2 N-~, 2 N and 
2 N-~, respectively at the step N. The intermediate variables (J~, J6) and (PI, P6) can be 
expressed as functions of./9, Jio and Pg, P~o by expressing the flow rate conservation at each 
vertex and the Ohm's law along each edge. Hence, 

J6 J, -1  l / \ e ,d  
[68.a] 
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(i l/ 
_ 

[68.b] 

when the four intermediate variables are eliminated between [67] and [68], the final relation 
between the flow rates and pressures may be expressed as 

Jio ffi aN ~ PJo , 
[691 

where the 2 x 2 matrices aN, ~N, ~N and ~N are given by 

aN = (l __ 2 N-I • A~,)-I . 
2 l 1 - 

A ~ .  ~ - ~ "  - l  ' 

/~# = (I - 2 #-I • Ak)-' • B,~, [(3 t2 • y~  = C:~ • 2 N -  ~ a ~  + 

5:1 - 2 N - '  C:~ • BN + D:¢ .  

[701 

Of course, AN is equal to the matrix in [69]. We can come back to the starting point, the 
matrix ~o as expressed by [66], and we can reiterate the construction of the fractal. 

0.1 

0.0' 

\ 

Figure 8. The five independent coefficients -At~ (2, 2) (a), At~ (2, 3) (b), As  (2, 4) (c), - A ~  (3, 3) 
(d) and AN (3, 4) (e) as a function of the iteration number N for the injection of a fluid into a porous 

medium. 
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These calculations arc best done by a computer; when the initial matrix Ao is [64], results 
are illustrated in figure 8 when the five independent coefficients of As arc given as a function 
of the iteration number N. This reduction in the number of independent coefficients of AN is 
a consequence of its symmetric character, of the fact that the sum of every row (or line) is 
zero and of the symmetry of the graph. 

Comments could be very similar to the ones given for the Sicrpinski gasket. Some 
nonlinearity is also present and its amount depends upon the coefficient under consideration. 
The fractal character is only reached in the limit. The fractal tensor seems to be reducible to 
a single coefficient which was numerically found to b¢ close to 0.5; note that As(3, 4) 
eventually reaches this trend after a large number of iterations (~20). 

Finally, let us examine the network represented in figure 7a. As it was already 
emphasized, it is an idealization of the physical situation. However, we arc really interested 
by the pressures and flow rates at the corners, since the fluid invades larger structures from 
these corners. The network of figure 7a can be obtained by deleting some edges at each step; 
simultaneously, the equality of pressures and flow rates should be written at an increasing 
number of vertices. For instance, in figure 762, the edge 2-3 has to be deleted. In figure 763, 
two different situations must be calculated in order to obtain the next generation; first, the 
graph is complete and the external vertices are 4, 7, 6, 10 and 9; second, the external vertices 
are 4, 1, 9, 10 and 7, while the edges (1-4) and (1-9) are deleted. This process can be 
repeated. 

6. DISCUSSION 

As it was already stated in the previous section, the construction process can be 
generalized in many ways. Edges and vertices may be deleted, as it would be actually 
necessary for a rigorous construction process of the injection shown in figure 7a. Some finite 
graph, which was called the hat in this example, can be added at each step. This last feature 
illustrated in section 5.2 is not difficult to generalize. 

There is an other possible extension which is not a priori obvious. In the above theory, all 
the flow occurs, so to speak, around the fractal, since the network is always energized by the 
external vertices. We can also think of a different situation where the flow would occur 
between the external vertices of Fs and the external vertices of an inner graph, say S~I' 0. 
More precisely, the inner graph S~I'o is deleted, and external pressures P¢~ and flow rates J'(~)o~ 
are imposed at its corresponding external vertices. The relation [22a] can be generalized as 

| ICe) / 
[71] 

where the 2n, x 2n, matrix As has to be calculated. This situation was not further 
investigated, since it is usually the one described by [22a] which is of practical significance. 

The relation [43] presents some formal similarity with the general formula obtained by 
Adler & Brenner (1984a) for a spatially periodic capillary network, since in both cases there 
is a central inverted matrix. The same basic ingredients are present in some sense; the 
internal arrangement of the local graph was symbolized by a cycle matrix C (here ¢); the 
relations between the various unit cells were represented by a mixed operator ~R (here L). 

This provides us with a useful transition to the next point of the discussion. For spatially 
periodic networks, the flow rate vector was assumed to he spatially periodic. As a direct 
consequence, the pressure field could be decomposed into a continuous component related to 
the macroscopic pressure drop and a spatially periodic component. In the present situation, it 

I t(e)/  D,(e)~ (the flow rate vector -n - i ,  at the external is equivalent to relate the pressure vector,  M-~ 
vertices of I'~ which become internal vertices of Fs to the pressure vector P(~) (the flow rate 
vector J~)) at the external vertices of Fs. 
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As a consequence of the fundamental linearity of the Stokes flow on a capillary network, 
linear relations exist between these quantities 

p,(.)i Gx P~), [72a] N _ I  ~ • 

J'(')i H~ J~), [72b] N _ I  = ° 

where GN and H~ are (M - 1)n, x n. matrices. Physically, these relations mean that internal 
quantities can be calculated when the external and controlling quantities are known. 

These two matrices can be calculated as functions of the basic elements of description of 
the construction process. The matrix ~o (re- ~ may be defined as a generalization of the matrix 
~o [of. [32]] when its constitutive elements are based upon As_2. Thus, [39a] can be 
generalized into 

j , (e) i  1 
N - '  = - - ( ~ I I  N - l )  ° ='N-ID'(e)i "4" ¥ ' q 2 " ( N - I ) °  e ~ ) ) .  

/.t 
[73] 

Relations which are analogous to [38], [41] and [42] can easily be written down. The general 
expression for Gjv can be given as 

G~ - L t  (L ~I~ -'~ Lt)- '  L .(N-l) . . . . .  ~ 1 2  • [741 

Introduction of [72b] into [73] yields 

s,(,,, 1 (~,I?-" cN + ~oI~-"). e~'. [751 N - I ~  " 

Since As is not invertible, some care should be taken for the expression ofP~ ~ as a function of 
J~). The n th external vertex of r s  can be maintained at pressure 0; hence, 

p~) - tta,~' • j~). [76] 

The corresponding flow rate does not appear as such in [72b]. 
Apart this minor point, the matrix Hs is easily derived as 

n~, - (~,I, ~ - '  • C s  + e l f - ' )  • J t s ,  [77] 

Where ..-4~v is the n. x n. matrix 

[78] 

Hence, fractal relations are obtained when Gs and Hs  tend towards constant matrices, 
when N- - ,  oo 

G = limGs, [79a] 

H -  limHs. [79b] 

In this limit, the pressure vector and the flow rate vector are fractal. 
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The isotropic Sierpinski gasket is an example which can be carried out analytically. 
¢(~-t) is given by 

~)(~- ')  - ( 3 / 5 )  N- '  • ~ .  [80]  

It is easily foreseen that this multiplicative coefficient will disappear during the course of the 
calculation, which is the basic reason for which G~ and HN generally tend towards constant 
limits. We deduce that 

1 

12 2 

2 1 

2 2 

1 2 

2 1 

il 2 

2 

l 

2 

2 

2~ 

1 
H~, = 3" 

' - 1  1 0' 

- 2  -1  0 

1 - 1  0 

-1  - 2  0 

2 1 0 

1 2 0~ 

[81] 

Hence, it seems that we may state an important general property. Namely, in the limit 
N - -  ~, both the flow rates and pressures at the external vertices are fractal. A word of 
caution is necessary here since it may happen that this property does not always hold; so far 
we did not prove any general condition. Anyhow, this result has to be contrasted with the 
spatially periodic situation, where the character of these two quantities is different; the flow 
field is spatially periodic and the pressure is the superposition of a continuous component and 
of a spatially periodic component. 

Dimensional effects, anisotropy and nonlinearity will not be fully discussed here and we 
shall restrict ourselves to a few remarks. No explicit reference has been made to the space 
dimension, which is an important advantage of the present constructon process. The most 
interesting nonlinear character is certainly the one which arises from an actual spatial 
construction, as it occurred for the Leibniz packing (Adler 1984); a nonlinearity induced on 
a network is surely somewhat artificial, when it is not related to a specific situation. 

The Sierpinski gasket presents an original feature in relation with its isotropy; its fractal 
character is immediately obtained [cf. [60a] ]. Highly symmetric graphs may have the same 
property; regular graphs such as the circuit graph or the complete graph (Biggs 1974) may 
be good candidates for Fo. 

Finally, the end of this discussion is devoted to the calculation of the permeability of 
spatially periodic networks whose unit cell is a fractal. Of course, the permeability of the 
network could be obtained as in Adler & Brenner (1984a), but the gain of the present 
analysis would be lost since the whole graph F~ should be decomposed into cycles and so  
on . . . .  Actually, the most convenient starting point is the transfer matrix a~ which is 
supposed to be known after the fractal analysis. Only a broad outline of the method is 
given. 

The following notations are necessary. The cell number is referred to by a triplet I of 
integers, when a three-dimensional situation is considered; inside a cell, the vertex number is 
denoted by i. A priori, pressures and flow rates depend upon both I and i. However, the 
pressures may be decomposed as 

p(I, i) - p ( i )  + n~. V~, [821 

where p(i) is a spatially periodic function, R, the spatial position of cell I and V~ the 
macroscopic gradient. 
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o b 

Figure 9. A spatially periodic network whose basic graph is a fractal. (a) The basic graph. (b) The 
derived graph with the additional edges. 

Hence, the pressure drop between homologous vertices is easily found to be 

R,) • [83] 

The derived graph rN, d may now be introduced by adding additional edges between the 
homologous vertices of FN (see figure 9). To each additional edge j,  a macroscopic jump 
vector R( j )  may be associated 

R ( j )  = Rr - R,, [84] 

where the edgej  goes from a vertex in cell I to one in cell I'. 
On this set of additional edges, a pressure generator vector may be defined as 

w 

g - [85] 

where .~ is a mixed m x 3 operator, l t s j th  line consists of the vector R(j) ' f .  
The graph Fo composed by the additional edges and the external vertices may be 

rearranged into its connected components; let c by their number. When the last vertex is 
assumed to be at pressure 0, we can decompose aN into submatrices a~ J~ on each component; 
hence, a pressure origin ~<o ( i  - 1 . . . . .  c - l) can be assigned to a given vertex inside each 
component, except the last one. On each component, except the last one where it is 
automatically satisfied, the sum of the external flow rates is equal to zero. This provides 
c - 1 equations, from which ~z) (i ffi 1 . . . . .  c - l) are determined. 

The problem is thus solved in principle and various quantities such as the permeability 
can be calculated. Details are not given here since they can be found in Adler & Brenner 
(1984a). 
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